Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TOR regulates the subcellular distribution of DIM2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export.

Identifieur interne : 001582 ( Main/Exploration ); précédent : 001581; suivant : 001583

TOR regulates the subcellular distribution of DIM2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export.

Auteurs : Emmanuel Vanrobays [Belgique] ; Alexis Leplus ; Yvonne N. Osheim ; Ann L. Beyer ; Ludivine Wacheul ; Denis L J. Lafontaine

Source :

RBID : pubmed:18755838

Descripteurs français

English descriptors

Abstract

Eukaryotic ribosome synthesis is a highly dynamic process that involves the transient association of scores of trans-acting factors to nascent pre-ribosomes. Many ribosome synthesis factors are nucleocytoplasmic shuttling proteins that engage the assembly pathway at early nucleolar stages and escort pre-ribosomes to the nucleoplasm and/or the cytoplasm. Here, we report that two 40S ribosome synthesis factors, the KH-domain protein DIM2 and the HEAT-repeats/Armadillo-domain and export factor RRP12, are nucleolar restricted upon nutritional, osmotic, and oxidative stress. Nucleolar entrapment of DIM2 and RRP12 was triggered by rapamycin treatment and was under the strict control of the target of rapamycin (TOR) signaling cascade. DIM2 binds pre-rRNAs directly through its KH domain at the 5'-end of ITS1 (D-A(2) segment) and, consistent with its requirements in early nucleolar pre-rRNA processing, is required for efficient cotranscriptional ribosome assembly. The substitution of a single and highly conserved amino acid (G207A) within the KH motif is sufficient to inhibit pre-rRNA processing in a fashion similar to genetic depletion of DIM2. DIM2 carries an evolutionarily conserved putative nuclear export sequence (NES) at its carboxyl-terminal end that is required for efficient pre-40S ribosome export. Strikingly, DIM2 and RRP12 are both involved in the nucleocytoplasmic translocation of pre-ribosomes, suggesting that this step in the ribosome assembly pathway has been selected as a regulatory target for the TOR pathway.

DOI: 10.1261/rna.1176708
PubMed: 18755838
PubMed Central: PMC2553727


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TOR regulates the subcellular distribution of DIM2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export.</title>
<author>
<name sortKey="Vanrobays, Emmanuel" sort="Vanrobays, Emmanuel" uniqKey="Vanrobays E" first="Emmanuel" last="Vanrobays">Emmanuel Vanrobays</name>
<affiliation wicri:level="4">
<nlm:affiliation>Fonds de la Recherche Scientifique (FRS-FNRS), Académie Wallonie-Bruxelles, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Charleroi-Gosselies, B-6041, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Fonds de la Recherche Scientifique (FRS-FNRS), Académie Wallonie-Bruxelles, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Charleroi-Gosselies, B-6041</wicri:regionArea>
<orgName type="university">Université libre de Bruxelles</orgName>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region type="region" nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leplus, Alexis" sort="Leplus, Alexis" uniqKey="Leplus A" first="Alexis" last="Leplus">Alexis Leplus</name>
</author>
<author>
<name sortKey="Osheim, Yvonne N" sort="Osheim, Yvonne N" uniqKey="Osheim Y" first="Yvonne N" last="Osheim">Yvonne N. Osheim</name>
</author>
<author>
<name sortKey="Beyer, Ann L" sort="Beyer, Ann L" uniqKey="Beyer A" first="Ann L" last="Beyer">Ann L. Beyer</name>
</author>
<author>
<name sortKey="Wacheul, Ludivine" sort="Wacheul, Ludivine" uniqKey="Wacheul L" first="Ludivine" last="Wacheul">Ludivine Wacheul</name>
</author>
<author>
<name sortKey="Lafontaine, Denis L J" sort="Lafontaine, Denis L J" uniqKey="Lafontaine D" first="Denis L J" last="Lafontaine">Denis L J. Lafontaine</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18755838</idno>
<idno type="pmid">18755838</idno>
<idno type="doi">10.1261/rna.1176708</idno>
<idno type="pmc">PMC2553727</idno>
<idno type="wicri:Area/Main/Corpus">001581</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001581</idno>
<idno type="wicri:Area/Main/Curation">001581</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001581</idno>
<idno type="wicri:Area/Main/Exploration">001581</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TOR regulates the subcellular distribution of DIM2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export.</title>
<author>
<name sortKey="Vanrobays, Emmanuel" sort="Vanrobays, Emmanuel" uniqKey="Vanrobays E" first="Emmanuel" last="Vanrobays">Emmanuel Vanrobays</name>
<affiliation wicri:level="4">
<nlm:affiliation>Fonds de la Recherche Scientifique (FRS-FNRS), Académie Wallonie-Bruxelles, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Charleroi-Gosselies, B-6041, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Fonds de la Recherche Scientifique (FRS-FNRS), Académie Wallonie-Bruxelles, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Charleroi-Gosselies, B-6041</wicri:regionArea>
<orgName type="university">Université libre de Bruxelles</orgName>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region type="region" nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leplus, Alexis" sort="Leplus, Alexis" uniqKey="Leplus A" first="Alexis" last="Leplus">Alexis Leplus</name>
</author>
<author>
<name sortKey="Osheim, Yvonne N" sort="Osheim, Yvonne N" uniqKey="Osheim Y" first="Yvonne N" last="Osheim">Yvonne N. Osheim</name>
</author>
<author>
<name sortKey="Beyer, Ann L" sort="Beyer, Ann L" uniqKey="Beyer A" first="Ann L" last="Beyer">Ann L. Beyer</name>
</author>
<author>
<name sortKey="Wacheul, Ludivine" sort="Wacheul, Ludivine" uniqKey="Wacheul L" first="Ludivine" last="Wacheul">Ludivine Wacheul</name>
</author>
<author>
<name sortKey="Lafontaine, Denis L J" sort="Lafontaine, Denis L J" uniqKey="Lafontaine D" first="Denis L J" last="Lafontaine">Denis L J. Lafontaine</name>
</author>
</analytic>
<series>
<title level="j">RNA (New York, N.Y.)</title>
<idno type="eISSN">1469-9001</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Cell Nucleolus (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Nuclear Export Signals (MeSH)</term>
<term>Nuclear Proteins (genetics)</term>
<term>Nuclear Proteins (metabolism)</term>
<term>Osmotic Pressure (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (physiology)</term>
<term>RNA, Ribosomal (metabolism)</term>
<term>Ribosome Subunits, Small, Eukaryotic (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (physiology)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Nucléole (métabolisme)</term>
<term>Petite sous-unité du ribosome des eucaryotes (métabolisme)</term>
<term>Pression osmotique (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (physiologie)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (physiologie)</term>
<term>Protéines nucléaires (génétique)</term>
<term>Protéines nucléaires (métabolisme)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Signaux d'export nucléaire (MeSH)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Nuclear Proteins</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nuclear Proteins</term>
<term>RNA, Ribosomal</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Nuclear Export Signals</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines nucléaires</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleolus</term>
<term>Ribosome Subunits, Small, Eukaryotic</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN ribosomique</term>
<term>Nucléole</term>
<term>Petite sous-unité du ribosome des eucaryotes</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines nucléaires</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Osmotic Pressure</term>
<term>Oxidative Stress</term>
<term>Protein Conformation</term>
<term>Protein Structure, Tertiary</term>
<term>Protein Transport</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Pression osmotique</term>
<term>Signaux d'export nucléaire</term>
<term>Stress oxydatif</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Transcription génétique</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Eukaryotic ribosome synthesis is a highly dynamic process that involves the transient association of scores of trans-acting factors to nascent pre-ribosomes. Many ribosome synthesis factors are nucleocytoplasmic shuttling proteins that engage the assembly pathway at early nucleolar stages and escort pre-ribosomes to the nucleoplasm and/or the cytoplasm. Here, we report that two 40S ribosome synthesis factors, the KH-domain protein DIM2 and the HEAT-repeats/Armadillo-domain and export factor RRP12, are nucleolar restricted upon nutritional, osmotic, and oxidative stress. Nucleolar entrapment of DIM2 and RRP12 was triggered by rapamycin treatment and was under the strict control of the target of rapamycin (TOR) signaling cascade. DIM2 binds pre-rRNAs directly through its KH domain at the 5'-end of ITS1 (D-A(2) segment) and, consistent with its requirements in early nucleolar pre-rRNA processing, is required for efficient cotranscriptional ribosome assembly. The substitution of a single and highly conserved amino acid (G207A) within the KH motif is sufficient to inhibit pre-rRNA processing in a fashion similar to genetic depletion of DIM2. DIM2 carries an evolutionarily conserved putative nuclear export sequence (NES) at its carboxyl-terminal end that is required for efficient pre-40S ribosome export. Strikingly, DIM2 and RRP12 are both involved in the nucleocytoplasmic translocation of pre-ribosomes, suggesting that this step in the ribosome assembly pathway has been selected as a regulatory target for the TOR pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18755838</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>10</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-9001</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2008</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>RNA (New York, N.Y.)</Title>
<ISOAbbreviation>RNA</ISOAbbreviation>
</Journal>
<ArticleTitle>TOR regulates the subcellular distribution of DIM2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export.</ArticleTitle>
<Pagination>
<MedlinePgn>2061-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1261/rna.1176708</ELocationID>
<Abstract>
<AbstractText>Eukaryotic ribosome synthesis is a highly dynamic process that involves the transient association of scores of trans-acting factors to nascent pre-ribosomes. Many ribosome synthesis factors are nucleocytoplasmic shuttling proteins that engage the assembly pathway at early nucleolar stages and escort pre-ribosomes to the nucleoplasm and/or the cytoplasm. Here, we report that two 40S ribosome synthesis factors, the KH-domain protein DIM2 and the HEAT-repeats/Armadillo-domain and export factor RRP12, are nucleolar restricted upon nutritional, osmotic, and oxidative stress. Nucleolar entrapment of DIM2 and RRP12 was triggered by rapamycin treatment and was under the strict control of the target of rapamycin (TOR) signaling cascade. DIM2 binds pre-rRNAs directly through its KH domain at the 5'-end of ITS1 (D-A(2) segment) and, consistent with its requirements in early nucleolar pre-rRNA processing, is required for efficient cotranscriptional ribosome assembly. The substitution of a single and highly conserved amino acid (G207A) within the KH motif is sufficient to inhibit pre-rRNA processing in a fashion similar to genetic depletion of DIM2. DIM2 carries an evolutionarily conserved putative nuclear export sequence (NES) at its carboxyl-terminal end that is required for efficient pre-40S ribosome export. Strikingly, DIM2 and RRP12 are both involved in the nucleocytoplasmic translocation of pre-ribosomes, suggesting that this step in the ribosome assembly pathway has been selected as a regulatory target for the TOR pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vanrobays</LastName>
<ForeName>Emmanuel</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Fonds de la Recherche Scientifique (FRS-FNRS), Académie Wallonie-Bruxelles, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Charleroi-Gosselies, B-6041, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leplus</LastName>
<ForeName>Alexis</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Osheim</LastName>
<ForeName>Yvonne N</ForeName>
<Initials>YN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beyer</LastName>
<ForeName>Ann L</ForeName>
<Initials>AL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wacheul</LastName>
<ForeName>Ludivine</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lafontaine</LastName>
<ForeName>Denis L J</ForeName>
<Initials>DL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>08</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>RNA</MedlineTA>
<NlmUniqueID>9509184</NlmUniqueID>
<ISSNLinking>1355-8382</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C484364">DIM2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D049790">Nuclear Export Signals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009687">Nuclear Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012335">RNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C481980">Rrp12 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002466" MajorTopicYN="N">Cell Nucleolus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049790" MajorTopicYN="N">Nuclear Export Signals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009687" MajorTopicYN="N">Nuclear Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009997" MajorTopicYN="N">Osmotic Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012335" MajorTopicYN="N">RNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054682" MajorTopicYN="N">Ribosome Subunits, Small, Eukaryotic</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18755838</ArticleId>
<ArticleId IdType="pii">rna.1176708</ArticleId>
<ArticleId IdType="doi">10.1261/rna.1176708</ArticleId>
<ArticleId IdType="pmc">PMC2553727</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2008 Jan 9;27(1):6-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18046452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2008 Aug;65(15):2334-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Oct;174(2):679-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16888326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 1;281(48):36579-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Apr 13;26(1):51-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Feb 4;100(3):323-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10676814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Feb 21;148(4):635-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10684247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 27;151(5):1057-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Feb 1;29(3):638-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11160884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 2;276(9):6445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11104765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 May;21(10):3405-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11313466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2002 Jun;14(3):313-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12067653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 May 17;318(5):1175-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12083510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2002 Dec;5(6):602-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12457705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 24;278(4):2147-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12438310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 May 15;31(10):2524-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2003 May;13(5):255-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12742169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2003 Aug 14;313:17-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12957375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:39-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Jan 15;18(2):196-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Apr;10(4):645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2004 Jun;17(6):527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:565-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Nov;173(21):7024-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1938905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 May 15;13(10):2452-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7515008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1995 Jun 15;9(12):1491-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7601353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1995 Oct 15;9(20):2470-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7590228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1996 Mar;19(6):1159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8730858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Jul;33(2):235-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10411741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Dec 22;16(6):943-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 May 8;173(3):349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16651379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Jun 19;581(15):2783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17509569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Aug 10;130(3):405-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Sep 7;27(5):767-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Nov 1;69(2):428-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17654551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Feb;19(2):735-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Aug 23;25(16):3832-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16888624</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
<region>
<li>Région de Bruxelles-Capitale</li>
</region>
<settlement>
<li>Bruxelles</li>
</settlement>
<orgName>
<li>Université libre de Bruxelles</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Beyer, Ann L" sort="Beyer, Ann L" uniqKey="Beyer A" first="Ann L" last="Beyer">Ann L. Beyer</name>
<name sortKey="Lafontaine, Denis L J" sort="Lafontaine, Denis L J" uniqKey="Lafontaine D" first="Denis L J" last="Lafontaine">Denis L J. Lafontaine</name>
<name sortKey="Leplus, Alexis" sort="Leplus, Alexis" uniqKey="Leplus A" first="Alexis" last="Leplus">Alexis Leplus</name>
<name sortKey="Osheim, Yvonne N" sort="Osheim, Yvonne N" uniqKey="Osheim Y" first="Yvonne N" last="Osheim">Yvonne N. Osheim</name>
<name sortKey="Wacheul, Ludivine" sort="Wacheul, Ludivine" uniqKey="Wacheul L" first="Ludivine" last="Wacheul">Ludivine Wacheul</name>
</noCountry>
<country name="Belgique">
<region name="Région de Bruxelles-Capitale">
<name sortKey="Vanrobays, Emmanuel" sort="Vanrobays, Emmanuel" uniqKey="Vanrobays E" first="Emmanuel" last="Vanrobays">Emmanuel Vanrobays</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001582 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001582 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18755838
   |texte=   TOR regulates the subcellular distribution of DIM2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18755838" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020